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Abstract :  Let R be a commutative ring and let Z(R) be its set of zero- divisors. We associate a graph 𝜞(𝑹) to R with vertices 

Z(R)* =Z(R) – {0}, the set of non- zero zero divisors of R and for distinct u,vZ(R)*, the vertices u and v are adjacent if and only 

if uv = 0 . In this paper we survey some ways of transforming a non-planar graph into a planar for complete zero divisor graphs, 

and discuss measures to obtain the planarity of a graph. We also characterize both the minimum and maximum number of edge 

crossings possible in particular Zero divisor graph classes. First we define the maximum rectilinear crossing number (MRCN) of a 

graph G, denoted by CR(𝜞(𝒁𝒏).)) where we seek a straight line drawing maximizing the number of edge crossings and secondly 

we recall the minimum rectilinear crossing number of zero divisor graphs especially for complete graph. Ultimately we 

investigate, the Maximum planar sub graphs of these maximum and minimum Rectilinear crossing number of zero divisor graphs. 

 

IndexTerms - Rectilinear Crossing number, planar graph, Zero Divisor Graph. 

 

I. INTRODUCTION 

A graph which can be drawn in the plane in such a way that edges meet only at points corresponding to their common ends is 

called a Planar graph, and such a drawing is called a Planar embedding of the graph. Let G be a graph drawn in the plane with 

the requirement that the edges are line segments, no three vertices are collinear, and no three edges may intersect in a point, 

unless the point is a vertex. Such a drawing is said to be a Rectilinear drawing of G. The rectilinear crossing number of G, 

denoted by 𝑐�̅�(𝐺), is the fewest number of edge crossings attainable over all rectilinear drawings of G [3]. Any such a drawing 

is called optimal. The idea of a zero divisor graph of a commutative ring was introduced by I. Beck in [1]. The zero divisor 

graph is very useful to find the algebraic structures and properties of rings. We mainly focus on D. F. Anderson and P. S. 

Livingston’s zero divisor graphs.[2, 4, 10] 

II. SOME DEFINITIONS 

Definition - 1:  If a and b are two non-zero elements of a ring 𝑍𝑛 such that a.b = 0, then ‘a’ and ‘b’ are the Zero divisors of 

commutative ring 𝑍𝑛.  

Definition - 2: If a graph 𝐺′ = (𝑉, 𝐸′) is a maximum planar subgraph of a graph 𝐺 = (𝑉, 𝐸) such that there is no planar 

subgraph  𝐺′′ = (𝑉, 𝐸′′)  of G with |𝐸′′| > |𝐸′|, then 𝐺′ is called a maximum planar subgraph of G. 

 

III. CONSISTENCY OF MAXIMUM RECTILINEAR CROSSING NUMBER OF ZERO DIVISOR REGULAR GRAPHS 

The problem of drawing a graph in the plane with a minimum number of edge crossings with straight line segments 

called the Rectilinear crossing number of zero divisor graph has been formulated in full generality [7,8,9] is a well-studied 

problem. The maximum Rectilinear crossing number of zero divisor regular graphs is meant for complete Zero divisor graph 

𝐶𝑅̅̅ ̅̅ (𝛤(𝑍𝑝2)) which contains ( 𝑝 − 1) vertices within it that implies 𝐶𝑅̅̅ ̅̅ (𝛤(𝑍𝑝2)) is a ( 𝑝 − 2) -Regular graph and can be denoted 

by 𝑅𝑝−1,𝑝−2, and is defined as follows.  

𝐶𝑅̅̅ ̅̅ (𝛤(𝑍𝑝2)) = 𝐶𝑅̅̅ ̅̅ (𝑅𝑝−1,𝑝−2) = (
𝑝 − 1

4
) 

The Maximum Rectilinear crossing number for the class , 𝑅𝑛,𝑑 of all d -Regular graphs of order n is denoted by 𝐶𝑅̅̅ ̅̅ (𝑅𝑛,𝑑). Then 

from a theorem [6] we have 

𝐶𝑅̅̅ ̅̅ (𝑅𝑛,𝑑) ≥ (
𝑛

4
) −∑(𝑛)(𝑖 − 1)(𝑛 − 2𝑖)

𝑘−1

𝑖=1

 

where 𝑑 = 𝑛 − 1, 𝑘 =
1

2
(𝑛 − 𝑑 − 1) 

We mean the Consistency is that reduction of the Maximum Rectilinear crossing number of zero divisor Regular graphs 

to the maximum induced planar subgraph, by framing an algorithm by removal of edges and also by removal of crossings, which 

will be clear from the following theorem. 

Theorem 1: The consistency of Maximum Rectilinear crossing number of  𝐶𝑅̅̅ ̅̅ (𝛤(𝑍𝑝2)), for an outer planar graph,  

(i)When removing outermost edges, the edge planarity is,  
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𝐶𝑅̅̅ ̅̅ (𝛤(𝑍𝑝2)) =
(𝑝 − 1)𝑑

24
−∑𝑛

𝑑−2

𝑛=1

 

(ii)When removing the edges involved in crossing is, 

 

𝐶𝑅̅̅ ̅̅ (𝛤(𝑍𝑝2)) =
(𝑝 − 1)𝑑

24
[3𝑝𝑑 − 9𝑑 − 2𝑑2 + 2] 

(iii) When removing the minimum number of inner edges to get an maximum induced planar subgraph is, 

 

𝑃 (𝛤(𝑍𝑝2)) =
(𝑝 − 1)𝑑

24
[3𝑝𝑑 − 9𝑑 − 2𝑑2 + 2] − 1∑𝑛

𝑑−2

𝑛=1

− 2∑𝑛 +⋯+ (𝑑 − 2)

𝑑−3

𝑛=1

 

 

 

Proof: The vertex set of  𝛤(𝑍𝑝2) is, 

𝑉 (𝛤(𝑍𝑝2)) = {𝑝, 2𝑝, . . , 𝑝(𝑝 − 1)}. Then |𝑉 (𝛤(𝑍𝑝2))| = 𝑝 − 1. 

The edge  set is  𝐸 (𝛤(𝑍𝑝2)) =

(

  
 

(𝑝, 2𝑝), (𝑝, 3𝑝). . (𝑝, 𝑝(𝑝 − 1))

(2𝑝, 3𝑝)… (2𝑝, 𝑝(𝑝 − 1))
……………………………
……………………………
(𝑝(𝑝 − 2), 𝑝(𝑝 − 1)) )

  
 

 

Now consider the Rectilinear drawing of 𝛤(𝑍𝑝2) where the vertices are arranged as those of a convex n-gon. Step by step we 

delete all diagonals of lengths 1,2,…k-1. Let us assume that 𝐸1 (𝛤(𝑍𝑝2)) be the set of all edges   which does not involve in 

crossings. That is the edge set, 

𝐸 (𝛤(𝑍𝑝2)) = {(𝑝, 2𝑝), (2𝑝, 3𝑝), . . (𝑝(𝑝 − 1), 𝑝)} 

These edges contributes the (p-1) edges of lengths 1,2,..k-1.  We  proceed  by counting the number of crossings we remove from 

the drawing by now deleting the (p-1) edges of length k. Therefore, 

𝐶𝑅̅̅ ̅̅ (𝑅𝑝−1,𝑝−2) ≥ (
𝑝 − 1

4
) −∑(𝑝 − 1)(𝑖 − 1)(𝑝 − 1 − 2𝑖)

𝑘−1

𝑖=1

 

= (
𝑝 − 1

4
) −

1

6
(𝑝 − 1)(𝑘 − 1)(𝑘 − 2)(3(𝑝 − 1) − 4𝑘) 

Where  𝑑 = 𝑝 − 2, 𝑘 =
(𝑝−𝑑)

2
. Substituting k in the closed form of the sum above, we obtain the desired result.                                                    

        𝐶𝑅̅̅ ̅̅ (𝑅𝑝−1,𝑝−2) = (
𝑝−1
4
) −

1

6
(𝑝 − 1)(𝑘 − 1)(𝑘 − 2)(3𝑝 − 3 − 4𝑘) 

=
(𝑝 − 1)(𝑝 − 2)(𝑝 − 3)(𝑝 − 4)

24
−
𝑝 − 1

6
(
𝑝 − 𝑑

2
− 1) (

𝑝 − 𝑑

2
− 2)(3𝑝 − 3 − 4 (

𝑝 − 𝑑

2
)) 

                               =
(𝑝−1)

24
[(𝑝 − 2)(𝑝 − 3)(𝑝 − 4) − (𝑝 − 𝑑 − 2)(𝑝 − 𝑑 − 4)(3𝑝 − 3 − 2𝑝 + 2𝑑)]                                                                                 

                                  =
(𝑝−1)

24
[(𝑝3 − 9𝑝2 + 26𝑝 − 24) − (𝑝3 − 9𝑝2 − 3𝑝𝑑2 + 26𝑝 + 9𝑑2 − 2𝑑 + 2𝑑3)]                                                           

                                  =
(𝑝−1)𝑑

24
[3𝑝𝑑 − 9𝑑 − 2𝑑2 + 2] 

Now deleting the edges in 𝐶𝑅̅̅ ̅̅ (𝑅𝑝−1,𝑝−2) we  get, 

𝐶𝑅̅̅ ̅̅ (𝑅𝑝−1,𝑝−2) − 𝐶𝑅̅̅ ̅̅ (𝐸1 (𝛤(𝑍𝑝2))) =
(𝑝−1)𝑑

24
[3𝑝𝑑 − 9𝑑 − 2𝑑2 + 2]  − 𝐶𝑅̅̅ ̅̅ (𝐸1 (𝛤(𝑍𝑝2))) 

Here we conclude that 𝐶𝑅̅̅ ̅̅ (𝑅𝑝−1,𝑑) is same as 𝐶𝑅̅̅ ̅̅ (𝑅𝑝−1,𝑝−2) − 𝐶𝑅̅̅ ̅̅ (𝐸1 (𝛤(𝑍𝑝2))) 

Hence the condition 𝐸0 = {𝐶𝑅̅̅ ̅̅ (𝐺) = 𝐶𝑅̅̅ ̅̅ (𝐺 − 𝑒), 𝑒 ∈ 𝐸} is satisfied which is evident from the following cases. 

Case (i):  Let 𝑝 = 5 

Therefore 𝑑 = 𝑝 − 2 = 5 − 2 = 3 

𝐶𝑅̅̅ ̅̅ (𝛤(𝑍25))=𝐶𝑅̅̅ ̅̅ (𝑅𝑝−1,𝑑) = 𝐶𝑅̅̅ ̅̅ (𝑅4,3) = 1 =
1

2
 [2] 

=
12

24
 [45 − 27 − 18 + 2] 

                                                  =
4×3

24
[3 × 5 × 3 − 9 × 3 − 2 × 9 + 2] =

(𝑝−1)𝑑

24
[3𝑝𝑑 − 9𝑑 − 2𝑑2 + 2] 

𝐶𝑅̅̅ ̅̅ (𝐸1 (𝛤(𝑍𝑝2))) = 𝐶𝑅̅̅ ̅̅ (5,10) + 𝐶𝑅̅̅ ̅̅ (10,15) + 𝐶𝑅̅̅ ̅̅ (15,20) = 0 

Therefore, 𝐶𝑅̅̅ ̅̅ (𝑅𝑝−1,𝑑) − 𝐶𝑅̅̅ ̅̅ (𝐸1 (𝛤(𝑍𝑝2))) = 1 − 0 = 1 

Case (ii):  Let 𝑝 = 7  

Therefore 𝑑 = 𝑝 − 2 = 7 − 2 = 5 
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𝐶𝑅̅̅ ̅̅ (𝛤(𝑍49))=𝐶𝑅̅̅ ̅̅ (𝑅𝑝−1,𝑑) = 𝐶𝑅̅̅ ̅̅ (𝑅6,5) = 15 =
30

24
 [12] 

                                           =
30

24
 [105 − 45 − 50 + 2] 

                                          =
6×5

24
[3 × 7 × 5 − 9 × 5 − 2 × 25 + 2] =

(𝑝−1)𝑑

24
[3𝑝𝑑 − 9𝑑 − 2𝑑2 + 2] 

𝐶𝑅̅̅ ̅̅ (𝐸1 (𝛤(𝑍𝑝2))) = 𝐶𝑅̅̅ ̅̅ (7,14) + 𝐶𝑅̅̅ ̅̅ (14,21) + 𝐶𝑅̅̅ ̅̅ (35,42) = 0 

                                                    Therefore, 𝐶𝑅̅̅ ̅̅ (𝑅𝑝−1,𝑑) − 𝐶𝑅̅̅ ̅̅ (𝐸1 (𝛤(𝑍𝑝2))) = 15 − 0 = 15 

Let 𝐸2 (𝛤(𝑍𝑝2)) be the set of all edges which involves in crossings for an outer planar graph is given by, 

𝐸2 (𝛤(𝑍𝑝2)) = {(𝑝, 3𝑝), . . (𝑝, 𝑝(𝑝 − 2)), (2𝑝, 4𝑝). . (2𝑝, 𝑝(𝑝 − 2)), . . , (𝑝(𝑝 − 3)), 𝑝(𝑝 − 1)} 

We know that as the edges of 𝐸1 (𝛤(𝑍𝑝2)) doesnot involve in crossings, all the vertex has exactly has d-2 edges which involves 

in crossing. Let us start with vertex p. Initially, all the edges are drawn to every vertex adjacent to p, which has zero crossings. 

The next vertex 2p has the edge set, 𝐸2
1 (𝛤(𝑍𝑝2)) = {(2𝑝, 4𝑝). . (2𝑝, 5𝑝), . . (2𝑝, 𝑝(𝑝 − 1))}  which has (d-2) edges. The vertex 3p 

has the edge set, 𝐸2
2 (𝛤(𝑍𝑝2)) = {(3𝑝, 5𝑝). . (3𝑝, 6𝑝), . . (3𝑝, 𝑝(𝑝 − 1))} which has (d-3) edges. Continuing this way, we are left 

with the edge set, 𝐸2
3 (𝛤(𝑍𝑝2)) = {𝑝(𝑝 − 3), 𝑝(𝑝 − 1))} with one edge. We know that for an outerplanar d-regular graph there 

are 
(p−1)d

2
 edges. So summing up all the edges which involves in crossing, we get,   

(𝑑 − 2) + (𝑑 − 3)+. . +1 = ∑𝑛

𝑑−2

𝑛=1

 

 Therefore we can find the number of edges which doesnot involve in crossing is, 

(𝑝 − 1)𝑑

2
−∑𝑛

𝑑−2

𝑛=1

 

Which means  
(𝑝−1)𝑑

2
− (𝑝 − 1) =

(𝑝−1)(𝑑−2)

2
  edges involve in crossing, which is evident from the following cases.  If  p=5, then 

d=2 is a planar graph. So assuming for  𝑝 > 7, 

Case (i):  Let p=7 

Then   

𝑑 = 5 ⇒
(𝑝 − 1)𝑑

2
−∑𝑛

3

𝑛=1

 

=
6 × 5

2
− (3 + 2 + 1) = 15 − 6 = 9 

⇒ 9 edges doesnot involve in crossing for 𝛤(𝑍49). 

Case (ii):  Let p=11 

Then 

𝑑 = 9 ⇒
(𝑝 − 1)𝑑

2
−∑𝑛

7

𝑛=1

 

=
10 × 9

2
− (7 + 6+. . +2 + 1) = 45 − 28 = 17 

⇒ 17 edges does not involve in crossing for 𝛤(𝑍121). 

On removing  ∑ 𝑛𝑑−2
𝑛=1  edges, the graph 𝑅𝑝−1,𝑑   has (d-2)+(p-1) edges. Since the outermost (p-3) edges doesnot involve in 

any crossings, so neglecting (p-3) edges we get a star graph 𝑆1,𝑑−3  which is a planar graph. Note that removal of the edges, 

should not make any vertex isolated. 

Now we calculate the number of crossings on removing the edges of  𝐸2
1, 𝐸2

2, . . 𝐸2
𝑝−4

. As 𝐸2
1 has (d-2) edges, the 

crossings involved are 1[(𝑑 − 2) + (𝑑 − 3)+. . +1], 𝐸2
2 has (d-3) edges, the crossings involved are  2[(𝑑 − 3) + (𝑑 − 4)+. . +1], 

𝐸2
3 has (d-4) edges, the crossings involved are 3[(𝑑 − 4) + (𝑑 − 5)+. . +1]. Continuing this process upto 𝐸2

𝑝−4
 which has (d-2) 

crossings. Summing up all, 1[(𝑑 − 2) + (𝑑 − 3)+. . +1] + 2[(𝑑 − 3) + (𝑑 − 4)+. . +1]+3[(𝑑 − 4) + (𝑑 − 5)+. . +1] +
(𝑑 − 2)(1). Therefore 

𝐸2
1 + 𝐸2

2+. .+𝐸2
𝑝−4

= 1∑𝑛

𝑑−2

𝑛=1

+ 2∑𝑛

𝑑−2

𝑛=1

+. . +(𝑑 − 2) 

Finally to obtain the planarity, we subtract  𝐸2
1 + 𝐸2

2+. . +𝐸2
𝑝−4

 from the total crossing ,  𝐶𝑅̅̅ ̅̅ (𝑅𝑝−1,𝑑). That is, 

𝑃 (𝛤(𝑍𝑝2)) =
(𝑝 − 1)𝑑

24
[3𝑝𝑑 − 9𝑑 − 2𝑑2 + 2] − 1∑𝑛

𝑑−2

𝑛=1

− 2∑𝑛 +⋯+ (𝑑 − 2)

𝑑−3

𝑛=1

 

Therefore we can obtain , 𝐶𝑅̅̅ ̅̅ (𝑅𝑝−1,𝑑) =, 𝐶𝑅̅̅ ̅̅ (𝑆1,𝑑−3)=0. This can be proved from the following cases by induction. 
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Case (i):  Let p=5, then d=3 

𝐸 (𝛤(𝑍𝑝2)) =  𝐸(𝛤(𝑍25)) = {(5,10), (5,15), (5,20), (10,15), (10,20)(15,20)} 

= 𝑛[𝐸(𝛤(𝑍25))] = 6 =
4×3

2
= 
(𝑝−1)𝑑

2
 

𝐸1(𝛤(𝑍25)) = {(5,10), . . (10,15), (15,20), (5,20)} ⇒𝑛[𝐸1(𝛤(𝑍25))] = 4 = (𝑝 − 1) 

𝐸2(𝛤(𝑍25)) = {(10,20)} ⇒𝑛[𝐸2(𝛤(𝑍25))] = 1 = (𝑑 − 2) 

𝐸3(𝛤(𝑍25)) = {(5,15)} ⇒𝑛[𝐸3(𝛤(𝑍25))] = 1 = (𝑑 − 2) 

Therefore 𝑛[𝐸(𝛤(𝑍25))] −  𝑛[𝐸1(𝛤(𝑍25))] = 2 = 6 − 4 

=
(𝑝 − 1)𝑑

2
− (𝑝 − 1)  =

(𝑝 − 1)(𝑑 − 2)

2
=
(5 − 1)(3 − 2)

2
=
4 × 1

2
 

= 2 edges involve in crossing. Therefore removing  𝑛[𝐸2(𝛤(𝑍25))] = 1 = (𝑑 − 2) edges, 

⇒𝑛[𝐸(𝛤(𝑍25))] −  𝑛[𝐸1(𝛤(𝑍25))] − 𝑛[𝐸2(𝛤(𝑍25))] 

= 1 = 2 − 1 = 6 − 4 − 1 

=
(𝑝 − 1)(𝑑 − 2)

2
−∑𝑛

𝑑−2

𝑛=1

= 𝑛[𝐸3(𝛤(𝑍25))] 

Now,  

𝐶𝑅̅̅ ̅̅ [𝐸2(𝛤(𝑍25))] = 1 = ∑𝑛

𝑑−2

𝑛=1

 

Therefore 𝑃(𝛤(𝑍25)) =  𝐶𝑅̅̅ ̅̅ [𝐸(𝛤(𝑍25))] − 𝐶𝑅̅̅ ̅̅ [𝐸2(𝛤(𝑍25))] = 0 = 1 − 1 

= 1 − 1∑𝑛

𝑑−2

𝑛=1

 

=
4 × 3

24
 [45 − 27 − 18 + 2] − 1∑𝑛

𝑑−2

𝑛=1

 

=
(5 − 1) × 3

24
 [3 × 5 × 3 − 9 × 3 − (2 × 9) + 2] − 1∑𝑛

𝑑−2

𝑛=1

 

(𝑝 − 1)𝑑

24
[3𝑝𝑑 − 9𝑑 − 2𝑑2 + 2] − 1∑𝑛

𝑑−2

𝑛=1

− 2∑𝑛 +⋯+ (𝑑 − 2)

𝑑−3

𝑛=1

=  𝑃 (𝛤(𝑍𝑝2)) 

Case (ii):  Let p=7, then d=5 

𝐸 (𝛤(𝑍𝑝2)) =  𝐸(𝛤(𝑍49)) = {(7,14), . . , (7,42), (14,21), . . , (14,42), (21,28), . . , (21,42), (28,42), (35,42)} 

= 𝑛[𝐸(𝛤(𝑍49))] = 15 =
6×5

2
= 
(𝑝−1)𝑑

2
 

𝐸1(𝛤(𝑍25)) = {(7,14), (14,21), (21,28), (28,35), (35,42), (7,42)} 

⇒𝑛[𝐸1(𝛤(𝑍49))] = 6 = (𝑝 − 1) 

𝐸2(𝛤(𝑍25)) = {(14,28), (14,35), (14,42), (21,35), (21,42), (28,42)}⇒𝑛[𝐸2(𝛤(𝑍25))] = 6 

𝐸2
1(𝛤(𝑍49)) = {(14,28), (14,35), (14,42)}⇒𝑛[𝐸2

1(𝛤(𝑍49))] = 3 = (𝑑 − 2) 

𝐸2
2(𝛤(𝑍49)) = {(21,35), (21,42)}⇒𝑛[𝐸2

2(𝛤(𝑍49))] = 2 = (𝑑 − 3) 

𝐸2
3(𝛤(𝑍49)) = {(28,42)}⇒𝑛[𝐸2

3(𝛤(𝑍49))] = 1 = (𝑑 − 4) 

𝐸3(𝛤(𝑍49)) = {(7,21), (7,28), (7,35)} ⇒𝑛[𝐸3(𝛤(𝑍49))] = 3 = (𝑑 − 2) 

Therefore 𝑛[𝐸(𝛤(𝑍49))] −  𝑛[𝐸1(𝛤(𝑍49))] = 9 = 15 − 6 

=
(𝑝 − 1)𝑑

2
− (𝑝 − 1) =

(𝑝 − 1)(𝑑 − 2)

2
=
(7 − 1)(5 − 2)

2
=
6 × 3

2
 

= 9 edges involve in crossing. Therefore removing  𝑛[𝐸2(𝛤(𝑍49))] = 6 edges, 

= 𝑛[𝐸2
1 + 𝐸2

2 + 𝐸2
3](𝛤(𝑍49))  = 3 + 2 + 1 = (𝑑 − 2) + (𝑑 − 3) + 1 = ∑𝑛

𝑑−2

𝑛=1

 

⇒𝑛[𝐸(𝛤(𝑍49))] −  𝑛[𝐸1(𝛤(𝑍49))] − 𝑛[𝐸2(𝛤(𝑍49))] = 3 = 9 − 6 = 15 − 6 − 6 

=
(𝑝 − 1)(𝑑 − 2)

2
−∑𝑛

𝑑−2

𝑛=1

= 𝑛[𝐸3(𝛤(𝑍49))] 

Now,  𝐶𝑅̅̅ ̅̅ [𝐸2(𝛤(𝑍49))] = 𝐶𝑅̅̅ ̅̅ [𝐸2
1 + 𝐸2

2 + 𝐸2
3] (𝛤(𝑍49)) = 1(3 + 2 + 1) + 2(2 + 1) + 3(1) 
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= 1∑𝑛

𝑑−2

𝑛=1

+ 2∑𝑛

𝑑−3

𝑛=1

+ 3∑𝑛

𝑑−4

𝑛=1

 

Therefore 𝑃(𝛤(𝑍49)) =  𝐶𝑅̅̅ ̅̅ [𝐸(𝛤(𝑍49))] − 𝐶𝑅̅̅ ̅̅ [𝐸2(𝛤(𝑍49))] 

= 0 = 15 − 15∑𝑛

𝑑−2

𝑛=1

 

=
6 × 5

24
 [105 − 45 − 50 + 2] − 6 − 6 − 3 

=
(𝑝 − 1)𝑑

24
[3𝑝𝑑 − 9𝑑 − 2𝑑2 + 2] − 1∑𝑛

𝑑−2

𝑛=1

− 2∑𝑛 − 3∑𝑛

𝑑−4

𝑛=1

𝑑−3

𝑛=1

=  𝑃 (𝛤(𝑍𝑝2)) 

IV. CONSISTENCY OF MINIMUM RECTILINEAR CROSSING NUMBER OF ZERO DIVISOR GRAPHS 

 

Theorem 2: The consistency of Minimum number of Rectilinear crossing of 𝑐�̅� (𝛤(𝑍𝑝2)) obtained, when removing the minimum 

number of edges to get an maximum induced planar subgraph is, 𝑃 [𝐸 [𝑐�̅� (𝛤(𝑍𝑝2))]] =
(𝑝−1)(𝑝−2)

2
− 3(𝑝 − 1) + 6. 

Proof: 

From theorem [ 5,9] we know that the Minimum number of Rectilinear crossing of 𝑐�̅� (𝛤(𝑍𝑝2)) can be obtained by placing the 

vertices according to non-collinearity. That is each of three vertices forms a triangle one inside the other and each of four vertices 

forms a convex polyhedron. To find the consistency of 𝑐�̅� (𝛤(𝑍𝑝2))we proceed by removing the edges gradually to make the 

graph a maximum planar induced graph. From the above theorem, it is clear that the number of edges denoted by 𝑛 [𝑐�̅� (𝛤(𝑍𝑝2))] 

and equivalent to 
(𝑝−1)(𝑝−2)

2
. There are 6 − 3(𝑝 − 1)which doesnot indulge in the planarity of the graph. So the remaining edge 

contributes the minimum number of crossings. That is 
(𝑝−1)(𝑝−2)

2
− 3(𝑝 − 1) + 6 shall be removed from 𝑐�̅� (𝛤(𝑍𝑝2)) to make the 

graph a maximum induced planar subgraph denoted by , 𝑃 [𝐸 [𝑐�̅� (𝛤(𝑍𝑝2))]]. 

Case (i): Let 𝑝 = 5,  

𝐸 (𝛤(𝑍𝑝2)) = 𝐸(𝛤(𝑍25)) = {(5,10), (5,15), (5,20)(10,15), (10,20), (15,20)} 

𝑛[𝐸(𝛤(𝑍25))] = 6 =
4 × 3

2
=
(𝑝 − 1)(𝑝 − 2)

2
 

Since 𝛤(𝑍25) is planar, no edges are removed. 

 

 𝑃 [𝐸 [𝑐�̅� (𝛤(𝑍𝑝2))]] = 0 = 6 − 6 = 6 − 12 + 6 =
(𝑝−1)(𝑝−2)

2
− 3(𝑝 − 1) + 6 

Case (i): Let 𝑝 = 7,  

𝐸 (𝛤(𝑍𝑝2)) = 𝐸(𝛤(𝑍49)) = {(7,14), . . (7,42), (14,21)(14,42), (21,28), (21,42), (28,35), (28,42), (35,42)} 

𝑛[𝐸(𝛤(𝑍49))] = 15 =
6 × 5

2
=
(𝑝 − 1)(𝑝 − 2)

2
 

The edges are drawn until the graph does not changes its planarity. 𝑃 [𝑐�̅� (𝛤(𝑍𝑝2))] exists when the following 12 edges remains 

in the graph. That is, 𝑛 {𝑃 [𝑐�̅� (𝛤(𝑍𝑝2))]} = {(7,14), . . (7,42), (14,21)(14,42), (21,42), (28,35), (28,42), (35,42)} 

=12. Therefore, 𝑛[𝐸(𝛤(𝑍49))] −  𝑛 {𝑃 [𝑐�̅� (𝛤(𝑍𝑝2))]} =  𝑃 [𝐸 [𝑐�̅� (𝛤(𝑍𝑝2))]] = 3 

= 15 − 12 = 15 − 18 + 6 =
6 × 5

2
− 3 × 6 + 6 

=
(𝑝 − 1)(𝑝 − 2)

2
− 3(𝑝 − 1) + 6 

V .CONCLUSION 

In this paper we find maximum planar subgraph from a complete graphs, especially for zero divisor graphs in any rectilinear 

drawing of G. We infer from the above formulae that the removal of edges involved in crossings leading to a planar graph can be 

applied in any cabel networks, oil pipelines or diodes in a transistor. Suppose there arise a situation to remove any connections 

that crosses the network or disturbs in transmitting signals, so that the network becomes a complete planar one, without disturbing 

any nodes or vertices. 
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